Hierarchical Multi-resolution Finite Element Model for Soft Body Simulation
نویسندگان
چکیده
The complexity of most surgical models has not allowed interactive simulations on standard computers. We propose a new framework to finely control the resolution of the models. This allows us to dynamically concentrate the computational force where it is most needed. Given the geometrical model of an object to simulate, we first compute a bounding box and then recursively subdivide it where needed. The cells of this octree structure are labelled with mechanical properties based on material parameters and fill rate. An efficient physical simulation is then performed using hierarchical hexaedral finite elements. The object surface is used for rendering and to apply boundary conditions. Compared with traditional finite element approaches, our method dramatically simplifies the task of volume meshing and increases the propagation of the deformations.
منابع مشابه
A Multi-Physics Simulation Model Based on Finite Element Method for the Multi-Layer Switched Reluctance Motor
Using ANSYS finite element (FE) package, a multi-physics simulation model based on finite element method (FEM) is introduced for the multi-layer switched reluctance motor (SRM) in the present paper. The simulation model is created totally in ANSYS parametric design language (APDL) as a parametric model usable for various conventional types of this motor and it is included electromagnetic, therm...
متن کاملPreliminary results on multi-body dynamic simulation of a new test rig for wheel-rail contact
The ability to perform rolling contact fatigue (RCF) experiments in wheel–rail material is provided by a new small–scale test rig, manifesting the actual dynamic behaviour of the railway system. In this paper, a multi-body dynamics (MBD) model is proposed, simulating the vibration behaviour of the prescribed rig. The new testing facility is modelled using a three-dimensional model of the vehicl...
متن کاملGPU Simulation of Finite Element Facial Soft-Tissue Models
Physically-based animation techniques enable more realistic and accurate animation to be created. We present a GPU-based finite element (FE) simulation and interactive visualisation system for efficiently producing realisticlooking animations of facial movement, including expressive wrinkles. It is optimised for simulating multi-layered voxel-based models using the total Lagrangian explicit dyn...
متن کاملReal-Time Haptic Cutting of High-Resolution Soft Tissues
We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the follo...
متن کاملA Cohesive Zone Model for Crack Growth Simulation in AISI 304 Steel
Stable ductile crack growth in 3 mm thick AISI 304 stainless steel specimens has been investigated experimentally and numerically. Multi-linear Isotropic Hardening method coupled with the Von-Mises yield criterion was adopted for modeling elasto-plastic behavior of the material. Mode-I CT fracture specimens have been tested to generate experimental load-displacement-crack growth data during sta...
متن کامل